
Exploiting DeepSeek-R1: Breaking Down 
Chain of Thought Security 

 DeepSeek-R1 uses Chain of Thought (CoT) reasoning, explicitly sharing its step-by-
step thought process, which we found was exploitable for prompt attacks. 

 Prompt attacks can exploit the transparency of CoT reasoning to achieve malicious 
objectives, similar to phishing tactics, and can vary in impact depending on the 
context. 

 We used tools like NVIDIA’s Garak to test various attack techniques on DeepSeek-
R1, where we discovered that insecure output generation and sensitive data theft 
had higher success rates due to the CoT exposure. 

 To mitigate the risk of prompt attacks, it is recommended to filter out <think> tags 
from LLM responses in chatbot applications and employ red teaming strategies for 
ongoing vulnerability assessments and defenses. 

Welcome to the inaugural article in a series dedicated to evaluating AI models. In this entry, 
we’ll examine the release of deepseek-r1. The growing usage of chain-of-thought reasoning 
marks a new era for large language models. Chain-of-thought reasoning encourages the 
model to think through its answer before the final response. A distinctive feature of 
deepseek-r1 is that this chain of thought is shared directly with you. We perform a series of 
prompt attacks against 671 billion parameter deepseek-r1. We found that we can leverage  
this additional information to increase our attack success rate.  

 

Chain of Thought reasoning  
CoT reasoning encourages a model to take a series of intermediate steps before arriving at 
a final response. This approach has been shown to enhance the performance of large 
models on math-focused benchmarks, such as the GSM8K dataset for word problems. 

CoT has become a cornerstone for state-of-the-art reasoning models, including OpenAI’s 
O1 and O3-mini plus DeepSeek-R1, all of which are trained to employ CoT reasoning. 

A notable characteristic of the Deepseek-R1 model is that it explicitly shows its reasoning 
process within the <think> </think> tags included in response to a prompt. 



 

Figure 1. Deepseek-R1 providing its reasoning process 

Prompt attacks  
A prompt attack is when an attacker crafts and sends prompts to an LLM to achieve a 
malicious objective. These prompt attacks can be broken down into two parts, the attack 
technique, and the attack objective. 

 

Figure 2. Tricking the LLM into revealing its system prompt 

In the example above, the attack is attempting to trick the LLM into revealing its system 
prompt, which are a set of overall instructions that define how the model should behave. 
Depending on the system context, the impact of revealing the system prompt can vary. For 
example, within an agent-based AI system, the attacker can use this technique to discover 
all the tools available to the agent. 



 

Figure 3. A sample AI model’s system prompt 

The process of developing these techniques mirrors that of an attacker searching for ways 
to trick users into clicking on phishing links. Attackers identify methods that bypass system 
guardrails and exploit them until defenses catch up—creating an ongoing cycle of 
adaptation and countermeasures. 

Given the expected growth of agent-based AI systems, prompt attack techniques are 
expected to continue to evolve, posing an increasing risk to organizations. A notable 
example occurred with Google’s Gemini integrations, where researchers discovered that 
indirect prompt injection could lead the model to generate phishing links. 

Red-teaming DeepSeek-R1  
We used open-source red team tools such as NVIDIA’s Garak —designed to identify 
vulnerabilities in LLMs by sending automated prompt attacks—along with specially crafted 
prompt attacks to analyze DeepSeek-R1’s responses to various attack techniques and 
objectives. 



 

Figure 4. Attack objectives and the techniques performed against DeepSeek-R1 

Prompt AttacksThe following tables show the attack techniques and objectives we used 
during our investigation. We also included their IDs based on OWASP’s 2025 Top 10 Risk & 
Mitigations for LLMs and Gen AI Apps and MITRE ATLAS. 

Name OWASP ID MITRE ATLAS ID 

Prompt injection LLM01:2025 – Prompt Injection AML.T0051 – LLM Prompt Injection 

Jailbreak LLM01:2025 – Prompt Injection AML.T0054 – LLM Jailbreak 

Table 1. Attack techniques and their corresponding risk classifications under the OWASP and MITRE ATLAS 
indices 

 

Name OWASP ID MITRE ATLAS ID 

Jailbreak LLM01:2025 – Prompt Injection AML.T0054 – LLM Jailbreak 

Model theft  AML.T0048.004 – External Harms: ML 
Intellectual Property Theft 

Package hallucination LLM09:2025 – Misinformation AML.T0062 – Discover LLM 
Hallucinations 

Sensitive data theft LLM02:2025 – Sensitive 
Information Disclosure 

AML.T0057 – LLM Data Leakage 

Insecure output generation LLM05:2025 – Improper Output 
Handling 

AML.T0050 – Command and Scripting 
Interpreter 

Toxicity  AML.T0048 – External Harms 

Table 2. Attack objectives and their corresponding risk classifications under the OWASP and MITRE ATLAS 
indices 



Stealing secrets  
Sensitive information should never be included in system prompts. However, a lack of 
security awareness can lead to their unintentional exposure. In this example, the system 
prompt contains a secret, but a prompt hardening defense technique is used to instruct 
the model not to disclose it. 

As seen below, the final response from the LLM does not contain the secret. However, the 
secret is clearly disclosed within the <think> tags, even though the user prompt does not 
ask for it.  To answer the question the model searches for context in all its available 
information in an attempt to interpret the user prompt successfully. Consequently, this 
results in the model using the API speciϐication to craft the HTTP request required to 
answer the user's question. This inadvertently results in the API key from the system 
prompt being included in its chain-of-thought. 

 

 



 

Figure 5. A secret being exposedin DeepSeek-R1's CoT 

Discovering attack methods using CoT 
In this section, we demonstrate an example of how to exploit the exposed CoT through a 
discovery process. First, we attempted to directly ask the model to achieve our goal: 



 

Figure 6. Directly asking the model for sensitive information 

When the model denied our request, we then explored its guardrails by directly inquiring 
about them. 

Figure 7. Asking the model about its guardrails 

The model appears to have been trained to reject impersonation requests. We can further 
inquire about its thought process regarding impersonation. 



 

Figure 8. Finding a loophole in the model’s reasoning 

With these exceptions noted in the <think> tag, we can now craft an attack to bypass the 
guardrails to achieve our goal (using payload splitting). 

 

 

 

 

 

 



 



 

 

 

 

 

 

Figure 9. The attack scenario 

Attack success rate 
We used NVIDIA Garak to assess how diƯerent attack objectives perform against 
DeepSeek-R1. Our findings indicate a higher attack success rate in the categories of 
insecure output generation and sensitive data theft compared to toxicity, jailbreak, 
model theft, and package hallucination. We suspect this discrepancy may be influenced 
by the presence of <think> tags in the model's responses. However, further research is 
needed to confirm this, and we plan to share our findings in the future. 



 

Figure 10. Garak attack success rate broken down per attack objective 

Defending against prompt attacks 
Our research indicates that the content within <think> tags in model responses can 
contain valuable information for attackers. Exposing the model’s CoT increases the risk of 
threat actors discovering and refining prompt attacks to achieve malicious objectives. To 
mitigate this, we recommend filtering <think> tags from model responses in chatbot 
applications. 



Additionally, red teaming is a crucial risk mitigation strategy for LLM-based applications. In 
this article, we demonstrated an example of adversarial testing and highlighted how tools 
like NVIDIA’s Garak can help reduce the attack surface of LLMs. We are excited to continue 
sharing our research as the threat landscape evolves. In the coming months, we plan to 
evaluate a wider range of models, techniques, and objectives to provide deeper insights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


